Search results

Search for "copper nanoparticles" in Full Text gives 16 result(s) in Beilstein Journal of Nanotechnology.

Biomimetic chitosan with biocomposite nanomaterials for bone tissue repair and regeneration

  • Se-Kwon Kim,
  • Sesha Subramanian Murugan,
  • Pandurang Appana Dalavi,
  • Sebanti Gupta,
  • Sukumaran Anil,
  • Gi Hun Seong and
  • Jayachandran Venkatesan

Beilstein J. Nanotechnol. 2022, 13, 1051–1067, doi:10.3762/bjnano.13.92

Graphical Abstract
  • related to β-catenin signalling for the osteogenic process was confirmed by Western blot analysis [67]. Chitosan–copper nanocomposites Several research discoveries have proven the osteogenic properties of copper nanoparticles (CuNPs). Injectable hydrogels comprising copper with bioactive nanoparticles
PDF
Review
Published 29 Sep 2022

The effect of metal surface nanomorphology on the output performance of a TENG

  • Yiru Wang,
  • Xin Zhao,
  • Yang Liu and
  • Wenjun Zhou

Beilstein J. Nanotechnol. 2022, 13, 298–312, doi:10.3762/bjnano.13.25

Graphical Abstract
  • surface charge density, which, in turn, influences output current and voltage. Size and shape of the particles are related to the performance of TENG. The particle size distributions are given in Figure 7 and Figure 8. Narrower size distributions of copper nanoparticles lead to a higher output performance
  •  9). Generally, due to the increase of contact area and surface charge density a higher friction electrical output is produced. Large copper nanoparticles have full contact with the polymer, but small copper nanoparticles have insufficient contact with the polymer or even no contact at all. Therefore
  • , the improvement of friction electrical output performance is not obvious. Experiments 4, 5, and 15, which are shown in Figure 5 and Figure 6, respectively, yielded pyramidal copper nanoparticles with sharp surfaces. Among them, experiments 4 and 5 improved the output performance only by 18% to 19
PDF
Album
Full Research Paper
Published 15 Mar 2022

Progress and innovation of nanostructured sulfur cathodes and metal-free anodes for room-temperature Na–S batteries

  • Marina Tabuyo-Martínez,
  • Bernd Wicklein and
  • Pilar Aranda

Beilstein J. Nanotechnol. 2021, 12, 995–1020, doi:10.3762/bjnano.12.75

Graphical Abstract
  • polysulfides. Thus, the sulfur host has stronger affinity to polysulfides, which get highly immobilized in the cathode. Thus, Zheng et al. [44] reported on a cathode in which the shuttle effect is completely prevented. The sulfur host is based on copper nanoparticles deposited on high surface area mesoporous
PDF
Album
Review
Published 09 Sep 2021

Antimicrobial metal-based nanoparticles: a review on their synthesis, types and antimicrobial action

  • Matías Guerrero Correa,
  • Fernanda B. Martínez,
  • Cristian Patiño Vidal,
  • Camilo Streitt,
  • Juan Escrig and
  • Carol Lopez de Dicastillo

Beilstein J. Nanotechnol. 2020, 11, 1450–1469, doi:10.3762/bjnano.11.129

Graphical Abstract
  • ]. Chen et al. (2019) also developed an antimicrobial-based biocomposite containing Ag NPs with good antibacterial properties against E. coli and S. aureus, as shown by the disk diffusion method [102]. Copper nanoparticles are nanomaterials with good chemical stability, heat resistance, and excellent
  • [141]. In addition, the antimicrobial efficiency of silver and copper nanoparticles have also been improved through the development of Si–Ag and Si–Cu NPs. This achievement is specifically important when NPs present cytotoxic effects. Silver NPs were immobilized on hollow silica nanospheres or
PDF
Album
Review
Published 25 Sep 2020

Renewable energy conversion using nano- and microstructured materials

  • Harry Mönig and
  • Martina Schmid

Beilstein J. Nanotechnol. 2019, 10, 771–773, doi:10.3762/bjnano.10.76

Graphical Abstract
  • : materials and devices” covers the photo-electrochemical growth of platinum catalysts at plasmonic hot spots [6], the laser-assisted local growth of chalcopyrite absorbers [4], the preferential reactive ion etching of silicon by morphological anisotropies [5], the oxidation of copper nanoparticles resulting
PDF
Editorial
Published 26 Mar 2019

Gold nanoparticles embedded in a polymer as a 3D-printable dichroic nanocomposite material

  • Lars Kool,
  • Anton Bunschoten,
  • Aldrik H. Velders and
  • Vittorio Saggiomo

Beilstein J. Nanotechnol. 2019, 10, 442–447, doi:10.3762/bjnano.10.43

Graphical Abstract
  • , nanoparticles received the lion’s share, conferring shiny colors to pottery and glass in different eras. Copper nanoparticles, for example, have been found in red glass from the late Bronze Age, 1200–1000 BCE [2]. The use of nanoparticles as a colorant boomed around the 4th century CE within the Roman empire
PDF
Album
Supp Info
Full Research Paper
Published 12 Feb 2019

A novel copper precursor for electron beam induced deposition

  • Caspar Haverkamp,
  • George Sarau,
  • Mikhail N. Polyakov,
  • Ivo Utke,
  • Marcos V. Puydinger dos Santos,
  • Silke Christiansen and
  • Katja Höflich

Beilstein J. Nanotechnol. 2018, 9, 1220–1227, doi:10.3762/bjnano.9.113

Graphical Abstract
  • copper nanoparticles were embedded in an amorphous carbon and oxygen containing matrix. Raman investigations proved a high degree of carbon amorphization. TEM observations revealed the diffraction pattern of pure copper inside the deposits, while the Raman signal indicates the presence of copper oxide on
PDF
Album
Supp Info
Full Research Paper
Published 18 Apr 2018

The role of ligands in coinage-metal nanoparticles for electronics

  • Ioannis Kanelidis and
  • Tobias Kraus

Beilstein J. Nanotechnol. 2017, 8, 2625–2639, doi:10.3762/bjnano.8.263

Graphical Abstract
  • electrostatic attraction. In one study, alkylamines of different length stabilized copper nanoparticles in solvents such as THF or toluene. Longer chains increased stability and reduced metal deposition on the reactor walls [28]. The free electrons of nitrogen weakly coordinate the copper surface of the
  • -printed from inks based on silver–copper nanoparticles in 2-butoxyethanol acetate or electrocircuits from silver nanoparticles in water were inkjet-printed on paper substrates [50][91]. Alkanethiol-functionalized gold and silver nanoparticles in water exhibited increased dispersion stability with
  • sintering at 140 °C. The authors suggest that the shorter acid first disassociated, which caused partial nanoparticle coalescence, released heat, and led to partial dissociation of the decanoic acid, and the formation of conductive patterns [125]. Copper nanoparticles with glycolic (Figure 3) and lactic
PDF
Album
Review
Published 07 Dec 2017

Low-temperature CO oxidation over Cu/Pt co-doped ZrO2 nanoparticles synthesized by solution combustion

  • Amit Singhania and
  • Shipra Mital Gupta

Beilstein J. Nanotechnol. 2017, 8, 1546–1552, doi:10.3762/bjnano.8.156

Graphical Abstract
  • gas hourly space velocity (GHSV) and initial CO concentration. Keywords: CO oxidation; copper; nanoparticles; platinum; solution combustion; zirconia; Introduction The catalytic oxidation of carbon monoxide (CO) is of potential interest in applications such as CO sensors, carbon dioxide (CO2) lasers
PDF
Album
Full Research Paper
Published 31 Jul 2017

Role of oxygen in wetting of copper nanoparticles on silicon surfaces at elevated temperature

  • Tapas Ghosh and
  • Biswarup Satpati

Beilstein J. Nanotechnol. 2017, 8, 425–433, doi:10.3762/bjnano.8.45

Graphical Abstract
  • Tapas Ghosh Biswarup Satpati Surface Physics and Material Science Division, Saha Institute of Nuclear Physics, HBNI, 1/AF Bidhannagar, Kolkata-700064, India 10.3762/bjnano.8.45 Abstract Copper nanoparticles have been deposited on silicon surfaces by a simple galvanic displacement reaction, and
  • spectroscopy (EDX) and X-ray diffraction (XRD) analysis shows that the thermal oxidation of the copper nanoparticles and formation of cupric oxide (CuO) on silicon surfaces leads to wetting rather than agglomeration. In contrast, agglomeration has been observed when copper nanoparticles were annealed in a
  • oxidation of Cu nanoparticles deposited by the galvanic displacement reaction on silicon surfaces at various ambient conditions. Experimental Copper nanoparticles have been deposited on Si(100) substrates by an easy, one-step galvanic displacement reaction. 5 mL of 10 mM CuSO4 (Merck, >99%) solution was
PDF
Album
Supp Info
Full Research Paper
Published 13 Feb 2017

The difference in the thermal conductivity of nanofluids measured by different methods and its rationalization

  • Aparna Zagabathuni,
  • Sudipto Ghosh and
  • Shyamal Kumar Pabi

Beilstein J. Nanotechnol. 2016, 7, 2037–2044, doi:10.3762/bjnano.7.194

Graphical Abstract
  • -mediated heat transfer model; laser flash method; nanofluids; thermal conductivity; transient hot-wire method; Introduction In 1995, Choi et al. [1] dispersed copper nanoparticles in water, and termed the suspension as nanofluid. They observed a large increase in the thermal conductivity of this nanofluid
PDF
Album
Full Research Paper
Published 20 Dec 2016

Development of highly faceted reduced graphene oxide-coated copper oxide and copper nanoparticles on a copper foil surface

  • Rebeca Ortega-Amaya,
  • Yasuhiro Matsumoto,
  • Andrés M. Espinoza-Rivas,
  • Manuel A. Pérez-Guzmán and
  • Mauricio Ortega-López

Beilstein J. Nanotechnol. 2016, 7, 1010–1017, doi:10.3762/bjnano.7.93

Graphical Abstract
  • Nanotechnology Program. Centro de Investigación y de Estudios Avanzados del IPN. Av. IPN 2508, Col. San Pedro Zacatenco, Mexico City 07360, Mexico 10.3762/bjnano.7.93 Abstract This work describes the formation of reduced graphene oxide-coated copper oxide and copper nanoparticles (rGO-Cu2ONPs, rGO-CuNPs) on the
  • 200–1000 °C under inert atmosphere, both the morphology and phase composition of initial Cu2O nanoparticles dramatically changed. In the entire annealing temperature range, faceted rGO-coated copper oxide or copper nanoparticles (rGO-Cu2ONPs, rGO-CuNPs) were obtained; the predominant phase of
PDF
Album
Full Research Paper
Published 11 Jul 2016

Efficient electron-induced removal of oxalate ions and formation of copper nanoparticles from copper(II) oxalate precursor layers

  • Kai Rückriem,
  • Sarah Grotheer,
  • Henning Vieker,
  • Paul Penner,
  • André Beyer,
  • Armin Gölzhäuser and
  • Petra Swiderek

Beilstein J. Nanotechnol. 2016, 7, 852–861, doi:10.3762/bjnano.7.77

Graphical Abstract
  • , Bielefeld University, D-33615 Bielefeld, Germany 10.3762/bjnano.7.77 Abstract Copper(II) oxalate grown on carboxy-terminated self-assembled monolayers (SAM) using a step-by-step approach was used as precursor for the electron-induced synthesis of surface-supported copper nanoparticles. The precursor
  • chemisorbed species, two possibilities arise. The first is a dissociative adsorption of CO2 on the copper nanoparticles that are formed under electron exposure. This process is important for the chemical understanding of the industrial methanol synthesis with Cu–ZnO–Al2O3 catalysts [48] and has been observed
  • number of secondary electrons released in the first case. This also points to a significant contribution of electron-induced chemistry to the formation of CO which can be detected in RAIRS as adsorbate on the emerging copper nanoparticles. Conclusion This study confirms the previous finding [26] that
PDF
Album
Supp Info
Full Research Paper
Published 13 Jun 2016

Green synthesis, characterization and catalytic activity of natural bentonite-supported copper nanoparticles for the solvent-free synthesis of 1-substituted 1H-1,2,3,4-tetrazoles and reduction of 4-nitrophenol

  • Akbar Rostami-Vartooni,
  • Mohammad Alizadeh and
  • Mojtaba Bagherzadeh

Beilstein J. Nanotechnol. 2015, 6, 2300–2309, doi:10.3762/bjnano.6.236

Graphical Abstract
  • the surface of natural bentonite using Thymus vulgaris extract as a reducing and stabilizing agent. The natural bentonite-supported copper nanoparticles (Cu NPs/bentonite) were characterized by FTIR spectroscopy, X-ray diffraction (XRD), X-ray fluorescence (XRF), field emission scanning electron
  • aromatics in the extract. Also, given the presence of monoterpenes such as thymol and carvacrol, these transitions are probably related to the mentioned compounds involved in the reduction process and formation of copper nanoparticles deposited on bentonite surface through π-electron interactions [17][21
  • Cu NPs/bentonite is related to the dispersion of Cu NPs particles in the support, which provides more accessible reactive sites for reduction of 4-NP. Conclusion In this study, copper nanoparticles supported on natural bentonite using a Thymus vulgaris extract as a reducing and stabilizing agent were
PDF
Album
Full Research Paper
Published 03 Dec 2015

Preparation of Ni/Cu composite nanowires

  • Hu Wang,
  • Xiaoyu Li,
  • Ming Li,
  • Kenan Xie and
  • Li Liao

Beilstein J. Nanotechnol. 2015, 6, 1268–1271, doi:10.3762/bjnano.6.130

Graphical Abstract
  • characterized by XRD, SEM and TEM. The method has notable advantages: It is template-free, inexpensive, easy-to-operate, and it only needs a short reaction time, which makes it suitable for large-scale preparation. Keywords: copper nanoparticles; nickel nanowires; Ni/Cu composite nanowires; Introduction In
  • about preparing composite nanowires of nickel and copper has been reported to date. It is, however, of great significance to develop a new one-dimensional material containing both nickel and copper. In this research, a facile route to synthesize composite nanowires with copper nanoparticles on the
PDF
Album
Full Research Paper
Published 05 Jun 2015

From lithium to sodium: cell chemistry of room temperature sodium–air and sodium–sulfur batteries

  • Philipp Adelhelm,
  • Pascal Hartmann,
  • Conrad L. Bender,
  • Martin Busche,
  • Christine Eufinger and
  • Juergen Janek

Beilstein J. Nanotechnol. 2015, 6, 1016–1055, doi:10.3762/bjnano.6.105

Graphical Abstract
PDF
Album
Review
Published 23 Apr 2015
Other Beilstein-Institut Open Science Activities